
Skin Cancer Image Classification with
Parallelized Deep Artificial Neural Network

Matthew Liddy
Department of Computer Science

College of Science and Engineering
Texas Christian University
Fort Worth, Texas 76129

Email: matthew.p.liddy@tcu.edu

Sellars Levy
Department of Computer Science

College of Science and Engineering
Texas Christian University
Fort Worth, Texas 76129
Email: s.n.levy@tcu.edu

Westen Riley
Department of Computer Science

College of Science and Engineering
Texas Christian University
Fort Worth, Texas 76129

Email: westen.t.riley@tcu.edu

Abstract—Deep neural networks can often take hours,
or even days of training time to converge to an acceptable
minima. This semester’s research project investigates the
application of high-performance parallelization techniques
in deep multi-layer perceptron artificial neural networks
for binary image classification. The problem our artificial
neural network is attempting to solve is that of classifying
skin cancer images, such as carcinoma and melanoma, as
malignant or benign. Skin cancer arises from the develop-
ment of abnormal cells that, if malignant, have the ability
to invade or spread to other parts of the body. Such cancer
usually arises in the form of a raised area on the surface
of the skin. However, visually identifying if a raised area is
indeed malignant is not a straightforward task as it depends
on a variety of abstract and subjective characteristics,
including asymmetry, border irregularity, color, diameter,
and evolution. Due to these subjective factors, doctors
often struggle to distinguish between malignant and benign
visually. To better visually classify these categories, we
can implement an artificial neural network. Specifically, a
state of the art deep multi-layer perceptron artificial neural
network that will classify an image as either malignant and
benign. These networks are systems with interconnected
nodes that work much like neurons in the human brain.
Utilizing algorithms, such as gradient descent, we can
train these networks to recognize hidden patterns and
correlations in raw data, cluster and classify it, and — over
time — continuously learn and improve. The downside to
implementing such a neural network is that it will require
a large number of nodes, increasing the computational
complexity and training time. Our solution to this problem
is to utilize parallelization techniques and technologies,
including CUDA, MPI, and OpenMP, to ultimately improve
the training time of our neural network.

I. INTRODUCTION

Skin cancer is a disease that affects one in five people,
and it is not so easy to detect. It generally appears in the
form of raised skin, such as a mole, and can be almost
indistinguishable from a completely harmless, benign
mole. Because of the various subjective characteristics

that distinguish it as malignant, dermatologists often are
incapable of visually classify moles as malignant or
benign and normally use visual inspection to determine
if a biopsy is needed. A biopsy is currently the most
effective and accurate way to classify skin cancer as
malignant or benign. However, biopsies can take time
to run and get results, allowing the disease to potentially
grow and develop further. Skin cancer detected in the
early stages can be treated with up to a 95% survival rate.
Yet, if that same cancer is left unnoticed and untreated
long enough to develop to its second stage, that person’s
survival rate just dropped from 95% to 23%. It is for this
reason that early detection of skin cancer is crucial in
lowering the mortality rate associated with skin cancer.
To remedy this, many studies have been training neural
networks to classify skin cancer as malignant or benign
to create an easily accessible tool to detect skin cancer.

Training neural networks is a tedious and time-
consuming task, particularly when it comes to image
classification. A single image can have thousands of
pixels, and when split up by Red-Green-Blue values, the
size effectively triples. Having a large number of input
pixels can cause a sequential stochastic gradient descent
algorithm to become cumbersome in time, spending
hundreds of hours to potentially converge on an accurate
minimum. No matter how well optimized sequential
code is written, it is almost always beaten by code
written in parallel.

There are many ways to write accurate and fast neural
networks. However, for this semester’s research project,
we had limitations for what we were allowed to use.
We were not allowed to use significant libraries or tools
such as Google’s tensor flow to create our artificial
neural network. We were also specified to use C++ as
the language of choice, meaning that the versatility of
python was not an option for our team. Thus our team

was left to create from scratch our own artificial neural
network along with the parallelization to speed it up.

Our task for this semester project was to parallelize
image classification using an artificial neural network.
The training set we had access to was 3600 images of
malignant or benign melanoma skin cancer in which we
split up into training, validation, and testing sets (see
figure 1). Our neural network is stochastic, meaning

Fig. 1. Skin Cancer Dataset

that forward propagation, backpropagation, and weight
updating will be run individually on every image in our
dataset. This is a very slow process but is a surefire way
to converge to a minimum. It is slow due to the fact that
for every image, we need to do matrix-multiplication
on every layer. The most time-consuming layers to do
this operation on is the first to the second layer in
our network. The first layer contains 150, 528 nodes,
which is derived from 224× 224× 3, or the image size
multiplied by 3 to include RGB, as stated above. The
second layer contains 256 nodes, one for each of the
red-green-blue values, so we do matrix-multiplication
with two vectors of size 150, 528 and 256, leading to
massive computations for every image in our dataset.
This network training is indeed a very slow process.

What our artificial neural network is trying to do
is visually learn the difference between benign and
malignant melanoma. To the untrained eye, they may
look similar, if not identical. However, with a trained
eye, one will be able to tell that benign skin cancer is
usually smaller, visually darker, more round, and less
sporadic. So with each image it is trained on, the neural
network takes a step closer to understanding how to spot
the difference between two types of cancer visually.

Our main target for parallelization was the matrix-
multiplication operations since they consumed the major-
ity of time for each pass. The solution was simple: using

CUDA to do the matrix-multiplication for us. Instead
of using the few cores on a CPU, CUDA utilizes the
thousands of smaller cores on a GPU to do the calcu-
lations in parallel. This change generates a significant
speedup in our program. Before CUDA, each pass took
well around 30 seconds, whereas after we implemented
CUDA, each pass takes around 5 seconds. Other methods
for parallelization were using OpenMP to parallel for-
loops during initialization and MPI message passing for
matrix transposition.

Even though we have parallelized our neural network,
it still took a significant amount of time to run through
all 50 epochs. Since image classification is trying to
condense an input of 150, 528 into 1, it can take a large
number of epochs until it converges. In our case, we
had 2109 images in our training set, each of which took
around 5 seconds for one pass. This meant that if we
wanted to run through 50 epochs, it would take a little
less then a week, which seems like a long time. However,
if we had a speedup of 6, i.e, before parallelization, it
took 30 seconds per each pass and training the model
through 50 epochs would have taken over a month to run.
This is why parallelization is so important. When used
correctly, parallelization can save significant amounts of
time for everyday programs. Instead of taking a month
to wait for our neural network to converge, we only had
to wait a few days.

II. BACKGROUND AND RELATED RESEARCH

Artificial Neural Networks have long been utilized
for classification as well as regression. There are many
different network variations, but we have chosen a deep
multi-layer perceptron artificial neural network with fully
connected layers.

Similar to Ercal F. et al. [1], we selected this structure
as it is a general-purpose connection pattern and makes
no assumptions about the features in the data. However,
a side effect of this structure is that it results in a large
number of weights. Approximately, the product of the

size of the current layer and the bias multiplied by the
size of the next layer (|Li|+ 1)× |Li+1|.

A large number of weights θ becomes computationally
expensive when we apply gradient descent. Traditional
stochastic gradient descent algorithms begin with feed-
forward propagation. This algorithm is used to calculate
the output vector Y from a given input vector X . This
computation entails calculating the output for each neu-
ron in the network

∑n
i=1 xiθi. The activation function a

using hard tanh is then applied to this output.

Instead of calculating these outputs individually for
each layer, we vectorized our solution so we can cal-
culate any output o for each layer in a single matrix
multiplication step.

After the network computes the output value ŷ it is
compared to the target value y using the mean squared
error cost function J = 1

n

∑n
i=1(yi − ŷi)

2. With the
loss computed, the network’s weights need to be updated
to improve the network for the next pass. This weight
update computation is completed with the use of the
backpropagation algorithm. The goal of this algorithm
is to compute the partial derivatives ∂J

∂θ of the cost
function J with respect to any weight θ (including bias of
each node) in the network. Instead of computing the
change in weight ∆θ for each weight individually we uti-
lized matrix multiplication as well as a matrix transpose
function to simplify the calculation to ∆θ = ∂J(X,θt)

∂θ ×α
where α is the learning rate.

A common problem with deep artificial neural net-
works is the exploding gradient problem. We overcame
this problem with a technique outlined by R. Pascanu et
al. [2] called gradient clipping (see algorithm 1).

After solving these minor challenges, we now had a
completely vectorized solution for gradient descent. The
benefit of vectorizing the gradient descent algorithm is
that we can take advantage of modern parallelism in
the Central Processing Unit (CPU) and the Graphics
Processing Unit (GPU). Likewise, with the recent ad-
vances in technology, multicore processors and powerful
GPUs are affordable to everyone. Parallelization is the
approach of designing a computer program or system
to process data in parallel. Artificial Neural Network
Parallelization has been researched before—to much
success. For example, In Nickolls et al. [3] and Che
et al. [4], the authors explore the use of CPU-based
parallel approaches such as MPI, Pthreads, and OpenMP.
They also experiment with streaming processor cores
interconnected to external DRAM partitions. Jang et al.
[5] described a Multi-Layer Perceptron Network using
CUDA and OpenMP to classify text. Similarly, F. Nasse
et al. [6] created a face detection Convolutional Neural
Network and observed the benefits of GPU acceleration.

This project will attempt to combine the tools and
techniques utilized in the above literature as well as
produce similar results.

III. PARALLELIZATION TECHNIQUE

Initially, our neural network was designed to run
sequentially; however, for obvious reasons, this causes
the neural network to spend days or even weeks to train
itself. This is unacceptable and way too slow, so we used
a variety of parallelization techniques to speed up our
computations and training. The three main parallelization
techniques we implemented are CUDA, OpenMP, and
MPI.

The first technique used, CUDA, is for matrix multi-
plication. The GPU has thousands of slower processors
on it that can do multiplication computations at a slower
rate in contrast to a CPU with a single, much faster
processor, but, since there are thousands of them, the
GPU can do thousands of these computations at the same
time. As a result, for very large matrices, CUDA is able
to perform a large number of computations necessary for
matrix multiplication in a fraction of the time needed
to do it sequentially. Also, in order to speed up access
time, CUDA requires matrices to be represented in one

dimension and use the number of rows and columns to
index into the ”matrix.”

The first thing needed to be done for CUDA matrix
multiplication is to allocate memory. Since we already
have allocated memory for the matrices to be multiplied,
we need only allocate memory on the host for the
resulting product matrix. However, we need to allocate
memory on the device GPU for all of our matrices, both
the two matrices being multiplied and the resulting prod-
uct matrix. When the host calls the matrix multiplication
function that is to be executed in parallel, it launches
what is called a CUDA kernel.

The kernel has a particular job that it wants to com-
plete as efficiently as possible, and it does so with the
use of threads. The kernel’s job is then divided up into a
series of subtasks that need to be accomplished in order
for the job to be completed. Each of these subtasks is
divided among the threads in the kernel. These threads
are then grouped into clusters called blocks, which are
then further grouped in grids. Each of these blocks can
hold up to 1024 threads, or 512 on older GPUs, and each
kernel can launch in parallel as many blocks as the GPU
can support.

The next technique we implemented in our neural
net is MPI, or message passing interface. Initially, we
used MPI for our matrix transpose function since it can
be exhausting to do sequentially. Instead of having to
swap the position of each element individually, we can
use message passing to divide up the work in blocks
between processors. However, we came to find that
it wasn’t the fastest parallelization technique for our
matrix transposition function, which leads us to our final
technique.

The last technique incorporated into our project was
OpenMP. We have a variety of for-loops throughout our
program for reading in data, updating values, etc., and
it can take a while to iterate over every element se-

quentially. That’s where OpenMP comes in to parallelize
these tedious loops by dividing the work over multiple
different threads. However, the main benefit we found
with OpenMP was its use of shared memory allowed
for a much faster matrix transposition function since we
no longer needed as much communication and were able
to vastly reduce the overhead. Instead of separating the
data into blocks between processors, each thread is given
its own row and transposes it into its own column in a
new matrix so that no two processors should ever try and
access the same memory location for its row in the input
matrix or its column in the output (transposed) matrix.
We experimented with a few different implementations
by parallelizing various loops. However, after testing
the OpenMP parallelization with both row parallelization
and column parallelization, we found that there was not
much difference in the execution time when the pragma
omp statement was switched between the outer (row)
for-loop and the inner-nested (column) for-loop. Also,
since CUDA requires matrices to be represented in one
dimension, both column and row vectors are stored the
same way and do not need to be transposed before matrix
multiplication.

IV. SUMMARY OF RESULTS

A. Computation Environment

For both the sequential version and the parallel ac-
celerated version of the training algorithm we used
the following hardware and software environment: The
programs were compiled by the Nvidia CUDA NVCC
9.1.85 and run on 10-Core 3.3 GHz Intel i9-9820X with
two Nvidia RTX 2080 Ti 11 GB with NVLink and 64
GB of DDR4 3000MHz.

B. Performance Analysis

Upon analysis of the CUDA Matrix Multiplication,
we found significant improvements in overall speed. As
documented in the following table, we found a noticeable
difference between CPU and GPU multiplication of
an n × n matrix. As a result, both our feed-forward
and backpropagation vectorized algorithms were able to
take advantage of this speedup. Overall, our parallelized
network achieved a total speedup of 6.

n CPU (ms) GPU (ms)
2 0.001984 0.147584
4 0.00224 0.15856
8 0.001984 0.144384

16 0.003936 0.153248
32 0.01632 0.141248
64 0.122528 0.151328

128 1.384256 0.103712
256 10.148064 0.21632
512 163.643738 0.987296
1024 2849.583496 4.145984
2048 33529.48047 20.041183

V. CONCLUSIONS, LESSONS LEARNED, AND FUTURE
WORK

As we have seen, training a neural network to image
classify is a very time-consuming task to perform. With
the hundreds of thousands of pixels being simplified
down into one output - it may take several days for even a
parallelized neural network to converge. That said, it will
still normally beat a sequential neural network. Given our
limitations of not being able to use certain libraries, and
having a limitation to use only the C language, we are
proud to present our image classifying artificial neural
network. With our parallelization techniques achieving
a speedup of around 6, we can see how using parallel
structures can impact the everyday world to make every-
thing run faster. Cutting down our training time of over
a month to just over six days is a fantastic achievement.

Through our research and experimentation, we were
able to optimize our neural network and achieve a
speedup of roughly six by implementing various par-
allelization techniques. As a result, our neural network
was able to complete thirty epochs of the training data
in only ninety hours, as opposed to the three hundred
hours it would take to train the same neural network

sequentially. The bulk of our speedup was achieved in
our matrix multiplication function by using CUDA to
perform a large number of computations in parallel on
the GPU’s thousands of processors. Another significant
optimization we had came from using MPI for our matrix
transposition. We were also able to reduce the number
of matrix transpose function calls by implementing flat-
tening and storing all of our two-dimensional matrices
as one-dimensional vectors. We then use the number of
rows and columns of the matrices to index into the one-
dimensional vector, allowing us to represent the one-
dimensional vector as a two-dimensional matrix.

The two main problems we encountered during our
project were the vanishing gradient and the exploding
gradient problems. These were mainly due to our ac-
tivation functions, so we spent a good deal of time
researching and testing out different activation functions
to find out which one worked best for our neural
network. Initially, we were using the tanh() activation
function, but it kept giving too small a gradient for
too large of numbers causing the gradient to become
increasingly small and ”vanishing.” When this happens,
the gradient is too small to make any significant impact
on the weights, so consequently, the weights get stuck.

To counter this, we switched our neural networks
activation function to ReLU; however, this resulted in
the exploding gradient problem where the values became
increasingly large, causing the gradient to continuously
grow bigger and bigger until it reaches infinity.

Another problem we encountered was the rand() func-
tion in the standard C library. Rand() is a pseudorandom
number generator that generates an integer between zero
and RAND MAX. The problem lies in the fact that
this function lacks a distribution engine. Therefore, if
a smaller range is required and the modulus operator is
used to with a new maximum value of m, and m is not
divisible by RAND MAX, then the distribution will not
be uniform. To remedy this, we implemented mt19937
as our random number generator. This is a Mersenne
Twister based on the prime 219937 − 1 and allows us to
generate a real uniform distribution when shuffling the
dataset as well as generating random weights.

Over the course of this project, we identified several
approaches to improve both the parallelization and the
performance of the model generated. One technique that
we would like to implement in our future work is a
process called mini-batching. We currently use a process
called stochastic gradient descent. This, as described
above, does forward propagation, backward propagation,
and weight updating for each individual pass in our neu-
ral network. Another gradient descent algorithm is called
batch gradient descent that updated all the weights after
an entire epoch as passed. Stochastic is computationally
cheaper and programmatically simpler than batch. Batch,
however, is great for largely moving in the right direction
of convergence, yet it computationally expensive since
it has to store a whole dataset worth of information.
This is where mini-batch comes into account. Mini-batch
takes the best of both Stochastic and Batch gradient
descent and combines them into one. Mini-batch is able
to combine the power of batch, while also giving it
the speed and cheap-to-compute algorithm of Stochastic.

This method can also contribute to the parallelization of
the network as we could run multiple training examples
in feedforward in parallel and only be bound by a serial
weight update when each mini-batch completes.

Moving forward, we could also implement a more
aggressive optimization algorithm—Adam. This is an
adaptive learning rate optimization algorithm that lever-
ages momentum when updating weights to ultimately
speed up convergence. Our problem would be a perfect
candidate for this algorithm because it works well with
non-stationary objectives and problems with very noisy
and/or sparse gradients.

Going further, we could also implement dropout lay-
ers. This refers to randomly dropping out, or turning
off, neurons in a neural network. This Google patented
technique forces the neural network to learn more ro-
bust features that are useful in conjunction with many
different random subsets of the other neurons. Although
it results in more iterations to converge, it results in a
more generalized model and less overfitting.

Another technique we identified was the use of con-
volution. This is the current state of the art technique
for image classification that takes advantage of local
spatial coherence. It uses convolutional layers, also
known as filters, that extract the features from the input
image but also preserves the relationship between pixels.
This strategy models the way the human brain sees by
essentially compressing the image but also preserving
essential details. Convolution, in combination with max-
pooling, results in a significantly reduced input vector.
In turn, the network size is substantially reduced. This
results in faster training times and a more generalized
model. We did some preliminary testing of this strategy
with Google’s Vision AI and received a model accuracy
of 88% in under 3 hours of training.

Ultimately, over the course of this semester project, we
not only learned more about parallelization techniques
but also neural networks. We believe that the synergy of
these two domains is paramount as the field of machine
learning grows. Also, we are not done here. Moving
Forward, we will continue to improve on both accuracy
as well as performance. Be on the lookout for our
upcoming final research paper.

REFERENCES

[1] Ercal F., et al. Neural network diagnosis of malignant melanoma
from color images.. IEEE Trans Biomed Eng, 1994.

[2] R. Pascanu et al. On the difficulty of training recurrent neural
networks.. MLR Press, 1994.

[3] Nickolls et al. NVIDIA Tesla: A Unified Graphics and Computing
Architecture.. IEEE Micro, 2008.

[4] S. Che et al. A performance study of general-purpose applications
on graphics processors using CUDA. Journal of Parallel and
Distributed Computing, 2008.

[5] H. Jang et al. Neural Network Implementation Using CUDA and
OpenMP. Digital Image Computing: Techniques and Applications,
2008.

[6] F. Nasse et al. Face detection using gpu-based convolutional
neural networks, in: Computer Analysis of Images and Patterns.
Springer, 2009.

